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Abstract: Because of its highly computational 
efficiency and relative easy implementation, 
Feldkamp (FDK) reconstruction algorithm remains 
the most widely implemented method for 3D cone-
beam (CB) reconstruction from x-ray projections, 
especially when the single circular isocentric orbit is 
used as source trajectory. For more complex 
trajectories (two orthogonal circles, circle-plus-arc, 
circle-and-line) usually exact reconstruction 
algorithms are used, but with the expense of 
computational requirements and implementation. 
The degree of inaccuracy of FDK reconstruction is 
highly object dependent, and the largest errors are 
to be expected for planes parallel to and remote from 
the midplane. In this study we used various circular 
isocentric acquisition setting trying to overcome this 
disadvantage. We compared the classical single-
circular trajectory with the two-orthogonal and 
three-orthogonal circular trajectories. All projection 
acquired were used for object reconstruction using 
classical Feldkamp method, and considering the 
rotations of each trajectory plane from the standard 
one. Our results show that using two-orthogonal or 
three-orthogonal circular orbits, image quality of 
reconstructed slices greatly improves, and FDK 
algorithm can be used even for larger cone-angles. 
 
Introduction 
 

In the last years, there is an increasing interest on X-
ray cone-beam (CB) tomography in medical 
applications, due to the properties of this approach: fast 
volume coverage, higher image resolution, easy 
hardware implementation, and lower radiation doses. 
Despite important progress in exact CB reconstruction 
algorithms [1, 2], the approximate methods remain 
practically important, and among them Feldkamp-type 
(FDK) formulas are the most popular [3]. The main 
advantages of this reconstruction algorithm are the 
possibility of using incomplete scanning loci, partial 
detection coverage, and especially their high 
computational efficiency.  

The most common employed geometry for CB 
tomography is the circular isocentric orbit. From 
technical point of view, the circular scan path, in which 
the X-ray source rotates in a plane around the patient, is 
often the only feasible one, as alternate trajectories will 
involve patient’s movement. But based on the single-
circular source trajectory, mathematically exact 
reconstruction is possible only in the plane the source 

rotates in. Increasing the distance from this central 
plane, CT image quality became more and more 
deteriorated. In general, the degree of inaccuracy in 
FDK reconstruction is highly object-dependent. As first 
pointed out by Feldkamp, the largest errors are to be 
expected for reconstructions plane parallel to and 
remote from the midplane. Another source of 
inaccuracy is represented by the cone-angle, which 
should be kept les than ten degrees (half). However, 
information could be added if additional circular 
concentric acquisition is used. 

In this work, we compared the reconstructed images 
obtained from the classical single circular isocentric 
orbit, with the two- and three-orthogonal circular 
geometries for projection image acquisition in CBCT, 
using a FDK reconstruction method. Instead of one 
plane in which the source rotates, two or three isocentric 
orthogonal circular planes will be used. This type of 
acquisition setting can be used for head (brain), as well 
as for small animals/objects. The source may rotate in 
the two extra planes either completely (360°) or just for 
a limited angle, depending on the restriction imposed by 
the physical geometry and movement of the unit. 
 
Materials and Methods 
 

Due to its modest computational requirements and 
relative ease of implementation, FDK algorithm 
represents the most widely implemented method for 3D 
cone-beam reconstruction from transmitted x-ray 
projections. In the classical geometry scheme (single-
circular), planar projections )( pPβ  of an object 
(f(x,y,z)) are obtained at a number of angles β. The 
reconstructed image is obtained by first convolving the 
weighted projection data with a filter kernel h, and then 
backprojecting the filtered data from every angle, 
according to the formula:  
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where d is the distance from the source to the origin of 
the coordinate system, β is the rotational angle and 

)( pPβ  is the projection acquired at angle β. 
Although this method is useful for many purposes, 

and is qualitatively informative, image reconstructed 
with this algorithm suffer from well known artifacts, 
arising from the approximate nature of the algorithm. 



Reconstructed planes that are parallel and remote from 
the midplane are the ones that are mostly affected by 
these artifacts. To compensate for this effect, we used 
the two-orthogonal and three-orthogonal circular 
trajectories, so that every for every plane which is 
parallel to one of the circular trajectory we will have 
projection images taken from another non-parallel 
circular trajectory. The three-orthogonal consists of 
three circular orbits, so that the plane of one circle is 
perpendicular on the other two planes. For simplicity of 
computations, all orthogonal orbits are supposed to be 
concentric and have the same radius (figure 1). 
 

 
 
Figure 1: Geometry for three-orthogonal circular 
isocentric orbit. 
 

The reconstruction formula is the same like above, 
but we take into account the rotation of acquired 
projections with respect to the classical settings: 
considering that the classical circular trajectory is 
around Y0-axis, that is the rotation plane is (X0, Z0), the 
others two source rotation planes for this geometry will 
be (Y0, Z0) and (X0, Y0). The Euler angles between the 
first rotation plane and the second one are (Φ = 0°, Θ = 
-90°, Ψ= -90°), and (Φ = 90°, Θ = 90°, Ψ = 0°) 
between first and third rotation plane. The source can 
rotate completely in every plane, or just over a limited 
arc, depending on imaged objects and system 
particularities. 

For this study noise-free projection of two simulated 
phantoms were used: The Kudo-Defrise phantom, 
(seven ellipsoid disks) and the head (Shepp and Logan) 
phantom were simulated using the Simphan software 
data generator for radiographic imaging investigations 
[4, 5]. This in-house investigative tool software can be 
used to simulate the entire radiological process, 
including the imaged object, imaging modalities, 
operating parameters, beam transport. It provides 
sufficient accuracy and flexibility to allow its use in a 
wide range of approaches, been of particular help in the 
design of an experiment and the conduct of first level 
trials [5]. We used simulated data because it is 
particularly useful in studying specific effects, being 
free of distortions and others inaccuracies inherent to 
radiographic units [6]. For real data, preprocessing of 
projection images is needed prior to reconstruction in 
order to correct for pincushion distortion and errors due 
to earth magnetic field [7], but also for system 
inhomogeneities and sampling errors [8]. 

The ellipsoids phantom has been widely used to 
evaluate the performance of analytic cone-beam 
reconstruction algorithms, because it can effectively 

demonstrate the artifacts caused by incompleteness of 
projections when using the single-circular cone-beam 
geometry. Our simulated phantom consists of seven 
ellipsoids of equal size, separated by a distance of 30 
mm along the Y0 axis. The lengths of the semi-major 
axis of ellipsoids are 100, 7.5 and 100 mm in the x, y, 
and z direction respectively. The density of the objects 
is assumed to be 1 inside the ellipsoids and 0 outside. 

Because the two- and three-orthogonal geometry can 
be used with minimal requirements for the head, a three-
dimensional version of Shepp-and-Logan head phantom 
was also simulated. This phantom consists of 12 
ellipsoids with a very tight range of absorption 
coefficients, and was used to test the accuracy of the 
algorithm of reconstructing cross-sections of the human 
head.  

Projection images of these two phantoms were 
generated considering an isocentric rotation over 360° 
in each trajectory, at an angular step of 4°. Two sets of 
projection were acquired for each phantom and each 
geometry orbit, first for a cone angle of 10°, and the 
second for a 24° cone-angle. In the numerical 
simulations, for both phantoms we used a 36.5 by 36.5 
cm detector, with 256 by 256 pixels (image resolution = 
7 pixels/cm). The source-to-isocenter (SID) distance 
was 100cm, and source-to-image intensifier (SIID) 
distance 130cm for the 10° cone-angle, while for the 
24° cone-angle settings SID = 50cm and SIID = 65 cm. 

 
In order to verify the performance of Feldkamp 

algorithm for the different orbits used, the Root Mean 
Square (RMS) error was computed for all the 
reconstructed images, as an objective image 
characteristic, using the following formula: 
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where kjif ,,  is the reconstructed 3D image(volume) 

with dimensions I, J, K and t
ijkf  is the ideal (theoretical) 

value of the image. Moreover, profiles along central 
horizontal line were plotted to underline the differences 
between Feldkamp algorithm applied to classical single-
circular geometry and the two- and three- orthogonal 
geometries. 
 
Results 
 

The simulation results are shown in figures 2-5. 
Figure 2 shows the central sagital/vertical reconstructed 
slice of the Kudo-Defrise phantom, for cone-angles of 
10° (1) and 24° (2), when projections where acquired 
with single (a), two- (b) and three-orthogonal (c) 
circular orbits. The source rotates completely over 360° 
in all acquisition settings. It is easily observed that for 
larger cone angle the two- and three-orthogonal circular 
trajectories continue to result in well-defined objects 
(b2, c2), although some reconstruction blurring is 
introduced.  



 

 
 
Figure 2: The central sagital slice of the ellipsoids 
phantom, using 10° (a1, b1, c1) and 24° (a2, b2, c2) 
cone-angle and the single (a), two (b) and three-
orthogonal (c) circular trajectories. 
 

The line-profile corresponding to each image of 
figure 2, is shown in figure 3. The comparison of these 
images and their corresponding profiles, shows that with 
the use of the large cone-angle (24°), the FDK algorithm 
based on projection images acquired from a single 
circular orbit, introduces severe artefacts when 
reconstructing planes that are perpendicular to the 
midplane. The others two setting hold up reasonable 
well even for larger cone-angle: flat objects remote from 
centre are still well defined; the edges are conserved, 
although some blurring is introduced. The windowing 
range for all ellipsoid-phantom images is [0.3 - 1.0]. 

Figure 4 presents the RMS errors plots for axial 
planes (planes that are parallel to the midplane in the 
initial setting acquisition) for both 10° and 24° cone-
angles. In this case the ellipsoids were reconstructed at 
distances: -3 cm, 0 cm, 3 cm and 6 cm from midplane. It 
is again obvious that the two- and especially the three-
orthogonal setting, performs better (in terms of RMS 
errors) with reconstruction planes parallel to and remote 
from midplane for larger cone angles. In figure 5, 
reconstructed sagital slices of Shepp-Logan phantom at 
z = -2.5 cm for a cone-angle of 24° are shown. Images 
reconstructed with two and three-orthogonal geometry 
show again a better reconstruction quality. The display 

scale for these images has been concentrated in the 
density range [0.95- 1.05] for clarity. 

 
 
Figure 3: Profiles along the central horizontal lines of 
the images in figure 1: (a1) and (a2) for single circular 
orbit for 10° and 24° respectively, (b1) and (b2) for two-
orthogonal orbit and (c1), (c2) for the three orthogonal 
geometry. 

 
 

Figure 4: Root Mean Square (RMS) reconstruction 
errors for single, two- and three-orthogonal circular 
orbits. 



 
 
Figure 5: Reconstructed image of Shepp-Logan 
phantom using single-circular (a), two-orthogonal (b) 
and three-orthogonal (c) orbits at cone-angle of 24°. 
 

The simulated projections were acquired with the in-
house Simphan Simulator, and the reconstructions were 
performed on a Celeron 366MHz computer, using IDL 
language. It took about 42 seconds to reconstruct an 
image plane of 2562 pixels if the single circular orbit 
was used, and about 100 seconds to reconstruct the 
same image with the three-orthogonal circular isocentric 
geometry. 
 
Discussion 
 

As seen from the above figures, using two- or 
three-orthogonal orbit for data acquisition, provides 
better results for 3D image reconstruction, both in terms 
of RMS error (figure 4) and artifacts (figures 2, 3, 5). 

Using FDK reconstruction with the singular circular 
trajectory, greater errors are expected for a flat object 
parallel to and far from the midplane. This is obvious 
from figure 4, where reconstruction of similar ellipsoids 
at distance -3, 3 and 6 cm from midplane, show 
increasing of RMS errors. Reconstruction of such an 
object is smeared in the vertical direction; smearing is 
increasing with increasing object distance from the 
midplane, due to the fact that the shadow of the outer 
portion of the object results in an apparent reduced 
density below and above the object. Using the two or 
three orthogonal orbit will reduce this effect. 

The large cone-angle problem can also benefit by 
using these trajectories. While for a cone-angle of 24°, 
the FDK reconstruction from the single-circular orbit 
data introduces severe artifacts (figures 2, 3), the quality 
of the same reconstructed slice from projection acquired 
with the other two geometries improves significantly, 
though some reconstruction noise (blurring) is added. 
Especially the three-orthogonal setting perform 
reasonable well for larger cone-angles, the errors for 
reconstructed planes remote from midplane being 
significaly reduced (figure 4), and the edges and abrupt 
density changes are better conserved. 

The scan method for two- and three-orthogonal 
geometry can be implemented with minimal 
requirements, and without introducing much mechanical 
complexity. It can be used for the head and also for 
research purposes involving small animals/objects with 
a diameter of 25-35 cm, which require a larger cone-
angle for image acquisition. 
 
 

Conclusion 
 

The Feldkamp 3D cone-beam reconstruction from 
projection data acquired along a single circular source-
detector trajectory is a computationally efficient, and 
gives good results if some conditions are met. Using 
projections obtained from more than just one circular 
orbit, some of the artifacts, due to FDK approximate 
nature, are reduced (the large cone-angle problem, the 
blurring of slices parallel to and far from the midplane), 
while keeping the advantages that made this method so 
popular: easy implementation and fast computational 
time. 
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